Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 388
Filter
1.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462075

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance (PVR), right ventricular (RV) failure and premature death. Compounds with vasodilatory characteristics, such as ß-caryophyllene, could be promising therapeutics for PAH. This study aimed to determine the effects of free and nanoemulsified ß-caryophyllene in lung oxidative stress and heart function in PAH rats. Male Wistar rats (170 g, n = 6/group) were divided into four groups: control (CO), monocrotaline (MCT), monocrotaline + ß-caryophyllene (MCT-Bcar) and monocrotaline + nanoemulsion with ß-caryophyllene (MCT-Nano). PAH was induced by MCT (60 mg/kg i.p.), and 7 days later, treatment with ß-caryophyllene, either free or in a nanoemulsion (by gavage, 176 mg/kg/day) or vehicle was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and after, the RV was collected for morphometry and the lungs for evaluation of oxidative stress, antioxidant enzymes, total sulfhydryl compounds, nitric oxide synthase (NOS) activity and endothelin-1 receptor expression. RV hypertrophy, increased PVR and RV systolic and diastolic pressures (RVSP and RVEDP, respectively) and increased mean pulmonary arterial pressure (mPAP) were observed in the MCT group. Treatment with both free and nanoemulsified ß-caryophyllene reduced RV hypertrophy, mPAP, RVSP and lipid peroxidation. The reduction in RVSP was more pronounced in the MCT-Nano group. Moreover, RVEDP decreased only in the MCT-Nano group. These treatments also increased superoxide dismutase, catalase and NOS activities and decreased endothelin-1 receptors expression. Both ß-caryophyllene formulations improved mPAP, PVR and oxidative stress parameters. However, ß-caryophyllene in a nanoemulsion was more effective in attenuating the effects of PAH.


Subject(s)
Hypertension, Pulmonary , Polycyclic Sesquiterpenes , Pulmonary Arterial Hypertension , Rats , Male , Animals , Pulmonary Arterial Hypertension/metabolism , Monocrotaline/toxicity , Monocrotaline/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Rats, Wistar , Pulmonary Artery/metabolism , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism
2.
Drug Des Devel Ther ; 18: 767-780, 2024.
Article in English | MEDLINE | ID: mdl-38495631

ABSTRACT

Purpose: Pulmonary arterial hypertension (PAH) is a devastating disease with little effective treatment. The proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by the nuclear factor-κB (NF-κB) signaling activation plays a pivotal role in the pathogenesis of PAH. Forsythoside B (FTS•B) possesses inhibitory effect on NF-κB signaling pathway. The present study aims to explore the effects and mechanisms of FTS•B in PAH. Methods: Sprague-Dawley rats received monocrotaline (MCT) intraperitoneal injection to establish PAH model, and FTS•B was co-treated after MCT injection. Right ventricular hypertrophy and pulmonary artery pressure were measured by echocardiography and right heart catheterization, respectively. Histological alterations were detected by H&E staining and immunohistochemistry. FTS•B's role in PASMC proliferation and migration were evaluated by CCK-8 and wound healing assay. To investigate the underlying mechanisms, Western blotting, immunofluorescence staining and ELISA were conducted. The NF-κB activator PMA was used to investigate the role of NF-κB in FTS•B's protective effects against PAH. Results: FTS•B markedly alleviated MCT-induced vascular remodeling and pulmonary artery pressure, and improved right ventricular hypertrophy and survival. FTS•B also reversed PDGF-BB-induced PASMC proliferation and migration, decreased PCNA and CyclinD1 expression in vitro. The elevated levels of IL-1ß and IL-6 caused by MCT were decreased by FTS•B. Mechanistically, MCT-triggered phosphorylation of p65, IκBα, IKKα and IKKß was blunted by FTS•B. FTS•B also reversed MCT-induced nuclear translocation of p65. However, all these protective effects were blocked by PMA-mediated NF-κB activation. Conclusion: FTS•B effectively attenuates PAH by suppressing the NF-κB signaling pathway to attenuate vascular remodeling. FTS•B might be a promising drug candidate with clinical translational potential for the treatment of PAH.


Subject(s)
Caffeic Acids , Glucosides , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Rats , Animals , NF-kappa B/metabolism , Monocrotaline/adverse effects , Rats, Sprague-Dawley , Vascular Remodeling , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Signal Transduction
3.
J Hazard Mater ; 465: 133190, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38071773

ABSTRACT

Fine particulate matter (PM2.5) as an environmental pollutant is related with respiratory and cardiovascular diseases. Pulmonary arterial hypertension (PAH) was characterized by incremental pulmonary artery pressure and pulmonary arterial remodeling, leading to right ventricular hypertrophy, and finally cardiac failure and death. The adverse effects on pulmonary artery and the molecular biological mechanism underlying PM2.5-caused PAH has not been elaborated clearly. In the current study, the ambient PM2.5 exposure mice model along with HPASMCs models were established. Based on bioinformatic methods and machine learning algorithms, the hub genes in PAH were screened and then adverse effects on pulmonary artery and potential mechanism was studied. Our results showed that chronic PM2.5 exposure contributed to increased pulmonary artery pressure, pulmonary arterial remodeling and right ventricular hypertrophy in mice. In vitro, PM2.5 induced phenotypic switching in HPASMCs, which served as the early stage of PAH. In mechanism, we investigated that PM2.5-mediated mitochondrial dysfunction could induce phenotypic switching in HPASMCs, which was possibly through reprogramming lipid metabolism. Next, we used machine learning algorithm to identify ELK3 as potential hub gene for mitochondrial fission. Besides, the effect of DNA methylation on ELK3 was further detected in HPASMCs after PM2.5 exposure. The results provided novel directions for protection of pulmonary vasculature injury, against adverse environmental stimuli. This work also provided a new idea for the prevention of PAH, as well as provided experimental evidence for the targeted therapy of PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Mice , Cell Proliferation , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/metabolism , Lipid Metabolism , Myocytes, Smooth Muscle/metabolism , Particulate Matter/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Vascular Remodeling
4.
J Proteome Res ; 23(1): 264-276, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38015796

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive disease that affects both the lungs and heart. Right ventricle (RV) hypertrophy is a primary pathological feature of PAH; however, its underlying molecular mechanisms remain insufficiently studied. In this study, we employed tandem mass tag (TMT)-based quantitative proteomics for the integrative analysis of the proteome and phosphoproteome of the RV derived from monocrotaline-induced PAH model rats. Compared with control samples, 564 significantly upregulated proteins, 616 downregulated proteins, 622 downregulated phosphopeptides, and 683 upregulated phosphopeptides were identified (P < 0.05, abs (log2 (fold change)) > log2 1.2) in the MCT samples. The quantitative real-time polymerase chain reaction (qRT-PCR) validated the expression levels of top 20 significantly altered proteins, including Nppa (natriuretic peptides A), latent TGF-ß binding protein 2 (Ltbp2), periostin, connective tissue growth factor 2 (Ccn2), Ncam1 (neural cell adhesion molecule), quinone reductase 2 (Nqo2), and tropomodulin 4 (Tmod4). Western blotting confirmed the upregulation of Ncam1 and downregulation of Nqo2 and Tmod4 in both MCT-induced and hypoxia-induced PH rat models. Pathway enrichment analyses indicated that the altered proteins are associated with pathways, such as vesicle-mediated transport, actin cytoskeleton organization, TCA cycle, and respiratory electron transport. These significantly changed phosphoproteins were enriched in pathways such as diabetic cardiomyopathy, hypertrophic cardiomyopathy, glycolysis/gluconeogenesis, and cardiac muscle contraction. In summary, this study provides an initial analysis of the RV proteome and phosphoproteome in the progression of PAH, highlighting several RV dysfunction-associated proteins and pathways.


Subject(s)
Hypertension, Pulmonary , Rats , Animals , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/metabolism , Proteome/genetics , Phosphopeptides , Proteomics
5.
BMC Pulm Med ; 23(1): 209, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322452

ABSTRACT

BACKGROUND: This study aimed to determine whether postnatal treatment with recombinant human IGF-1 (rhIGF-1)/binding peptide 3 (BP3) ameliorates lung injury and prevents pulmonary hypertension (PH) in bronchopulmonary dysplasia (BPD) models. METHODS: We used two models of BPD in this study: one model that was associated with chorioamnionitis (CA), stimulated by intra-amniotic fluid and exposure to lipopolysaccharide (LPS), whereas the other was exposed to postnatal hyperoxia. Newborn rats were treated with rhIGF-1/BP3 (0.2 mg/Kg/d) or saline via intraperitoneal injection. The study endpoints included the wet/dry weight (W/D) ratio of lung tissues, radial alveolar counts (RACs), vessel density, right ventricular hypertrophy (RVH), lung resistance, and lung compliance. Hematoxylin and eosin (H&E) and Masson staining were used to evaluate the degree of lung injury and pulmonary fibrosis. IGF-1 and eNOS expression were detected using western blotting or quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The levels of SP-C, E-cadherin, N-cadherin, FSP1, and Vimentin in the lung tissues were detected by immunofluorescence. RESULTS: LPS and hyperoxia treatment increased lung injury and pulmonary fibrosis, enhanced RVH and total respiratory resistance, and decreased RAC, pulmonary vascular density and pulmonary compliance in young mice (all p < 0.01). Simultaneously, LPS and hyperoxia induced an increase in epithelial-mesenchymal transition (EMT) in airway epithelial cells. However, rhIGF-1/BP3 treatment reduced lung injury and pulmonary fibrosis, decreased RVH and total respiratory resistance, and enhanced RAC, pulmonary vascular density and pulmonary compliance, as well as inhibited EMT in airway epithelial cells in LPS and hyperoxia treated mice. CONCLUSION: Postnatal rhIGF-1/BP3 treatment relieved the effects of LPS or hyperoxia on lung injury and prevented RVH, providing a promising strategy for the treatment of BPD.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Hypertension, Pulmonary , Lung Injury , Pulmonary Fibrosis , Infant, Newborn , Pregnancy , Female , Rats , Animals , Humans , Mice , Bronchopulmonary Dysplasia/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/prevention & control , Hypertension, Pulmonary/metabolism , Lung Injury/metabolism , Hyperoxia/metabolism , Lipopolysaccharides/pharmacology , Pulmonary Fibrosis/pathology , Animals, Newborn , Insulin-Like Growth Factor I/metabolism , Rats, Sprague-Dawley , Lung/pathology , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/prevention & control , Hypertrophy, Right Ventricular/metabolism , Disease Models, Animal
6.
Am J Physiol Heart Circ Physiol ; 324(6): H804-H820, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36961489

ABSTRACT

Right ventricular (RV) failure is the major determinant of outcome in pulmonary hypertension (PH). Calves exposed to 2-wk hypoxia develop severe PH and unlike rodents, hypoxia-induced PH in this species can lead to right heart failure. We, therefore, sought to examine the molecular and structural changes in the RV in calves with hypoxia-induced PH, hypothesizing that we could identify mechanisms underlying compensated physiological function in the face of developing severe PH. Calves were exposed to 14 days of environmental hypoxia (equivalent to 4,570 m/15,000 ft elevation, n = 29) or ambient normoxia (1,525 m/5,000 ft, n = 25). Cardiopulmonary function was evaluated by right heart catheterization and pressure volume loops. Molecular and cellular determinants of RV remodeling were analyzed by cDNA microarrays, RealTime PCR, proteomics, and immunochemistry. Hypoxic exposure induced robust PH, with increased RV contractile performance and preserved cardiac output, yet evidence of dysregulated RV-pulmonary artery mechanical coupling as seen in advanced disease. Analysis of gene expression revealed cellular processes associated with structural remodeling, cell signaling, and survival. We further identified specific clusters of gene expression associated with 1) hypertrophic gene expression and prosurvival mechanotransduction through YAP-TAZ signaling, 2) extracellular matrix (ECM) remodeling, 3) inflammatory cell activation, and 4) angiogenesis. A potential transcriptomic signature of cardiac fibroblasts in RV remodeling was detected, enriched in functions related to cell movement, tissue differentiation, and angiogenesis. Proteomic and immunohistochemical analysis confirmed RV myocyte hypertrophy, together with localization of ECM remodeling, inflammatory cell activation, and endothelial cell proliferation within the RV interstitium. In conclusion, hypoxia and hemodynamic load initiate coordinated processes of protective and compensatory RV remodeling to withstand the progression of PH.NEW & NOTEWORTHY Using a large animal model and employing a comprehensive approach integrating hemodynamic, transcriptomic, proteomic, and immunohistochemical analyses, we examined the early (2 wk) effects of severe PH on the RV. We observed that RV remodeling during PH progression represents a continuum of transcriptionally driven processes whereby cardiac myocytes, fibroblasts, endothelial cells, and proremodeling macrophages act to coordinately maintain physiological homeostasis and protect myocyte survival during chronic, severe, and progressive pressure overload.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Ventricular Dysfunction, Right , Animals , Cattle , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Proteomics , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Heart Ventricles , Disease Models, Animal , Hypoxia , Ventricular Remodeling , Ventricular Function, Right , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/complications
7.
Gen Physiol Biophys ; 41(5): 407-416, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36222339

ABSTRACT

Hypoxia leads to hypoxic pulmonary hypertension (HPH), causing right ventricular hypertrophy (RVH). RVH becomes a significant and nonnegligible public health issue in the world. In our study, we successfully established the HPH rat model and found that RVH happened in HPH, and then we observed an increased inflammation response in the heart tissue of HPH-induced RVH rats. Moreover, increased N-deacetylase-N-sulfotransferase-1 (NDST1) and decreased nuclear localized protein 1 (NULP1) were found in the heart tissue of HPH-induced RVH rats. An in vitro cell experiment showed that inhibition of NDST1 expression enhanced cell viability, reduced cell apoptosis, alleviated cardiomyocyte hypertrophy, decreased inflammation and increased phosphorylated AKT level, however, over-expression of NDST1 had opposite effects on these aspects. NULP1 reversed the effects of NDST1 on these regulations. Finally, we found that up-regulated NDST1 reduced NULP1 expression and down-regulated NDST1 increased NULP1 expression. Our study confirmed that inhibition of the NDST1/NULP1 pathway might contribute to the attenuation of HPH-induced RVH, and the mechanism may be related to the reduction of inflammation, cardiomyocyte apoptosis, and AKT phosphorylation.


Subject(s)
Hypertension, Pulmonary , Hypertrophy, Right Ventricular , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Hypoxia/complications , Hypoxia/metabolism , Inflammation , Proto-Oncogene Proteins c-akt , Rats , Sulfotransferases
8.
Lung ; 200(5): 619-631, 2022 10.
Article in English | MEDLINE | ID: mdl-36107242

ABSTRACT

PURPOSE: It has been shown that activation of autophagy promotes the development of pulmonary arterial hypertension (PAH). Meanwhile, forkhead box M1 (FOXM1) has been found to induce autophagy in several types of cancer. However, it is still unclear whether FOXM1 mediates autophagy activation in PAH, and detailed mechanisms responsible for these processes are indefinite. METHOD: PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) to rats. The right ventricle systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), percentage of medial wall thickness (%MT), α-smooth muscle actin (α-SMA) staining, and Ki67 staining were performed to evaluate the development of PAH. The protein levels of FOXM1, phospho-focal adhesion kinase (p-FAK), FAK, and LC3B were determined by immunoblotting or immunohistochemistry. RESULTS: FOXM1 protein level and FAK activity were significantly increased in MCT-induced PAH rats, this was accompanied with the activation of autophagy. Pharmacological inhibition of FOXM1 or FAK suppressed MCT-induced autophagy activation, decreased RVSP, RVHI and %MT in MCT-induced PAH rats, and inhibited the proliferation of pulmonary arterial smooth muscle cells and pulmonary vessel muscularization in MCT-induced PAH rats. CONCLUSION: FOXM1 promotes the development of PAH by inducing FAK phosphorylation and subsequent activation of autophagy in MCT-treated rats.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Actins/metabolism , Animals , Autophagy , Disease Models, Animal , Familial Primary Pulmonary Hypertension , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/therapeutic use , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism , Ki-67 Antigen/metabolism , Monocrotaline/metabolism , Monocrotaline/toxicity , Phosphorylation , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Artery , Rats , Rats, Sprague-Dawley
9.
J Cell Mol Med ; 26(9): 2633-2645, 2022 05.
Article in English | MEDLINE | ID: mdl-35393789

ABSTRACT

In this study, a role of cell loss due to necroptosis and its linkage with pyroptosis in organ damage under the conditions of pulmonary arterial hypertension (PAH) was examined. Monocrotaline (MCT) was used to induce PAH in Wistar rats, and depending on the severity of the disease progression, they were further divided into two subgroups: MCT group-sacrificed 4 weeks after MCT administration and ptMCT group-prematurely sacrificed due to rapid deterioration in vital functions (on Day 24,11 ± 0,7). The elevation of respiratory rate and right ventricular (RV) hypertrophy were more evident in ptMCT group, while the heart rate and cardiac haemodynamic stress markers were comparably higher in both diseased groups. Detailed immunoblotting analysis revealed that the upregulation of pThr231 /Ser232 -RIP3 proceeded into necroptosis execution in the RVs, unlike in the lungs of both PAH stages. The elevated pulmonary pThr231 /Ser232 -RIP3 levels in both PAH subgroups were associated rather with GSDMD-mediated pyroptosis. On the contrary, other inflammasome forms, such as AIM2 and NLRC4, were higher in the RV, unlike in the lungs, of diseased groups. The PAH-induced increase in the plasma RIP3 levels was more pronounced in ptMCT group, and positively correlated with RV hypertrophy, but not with haemodynamic stress. Taken together, we indicated for the first time that pThr231 /Ser232 -RIP3 upregulation resulting in two different necrosis-like cell death modes might underlie the pathomechanisms of PAH and that the plasma RIP3 might serve as an additional diagnostic and prognostic marker of cardiac injury under these conditions.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , DNA-Binding Proteins , Disease Models, Animal , Familial Primary Pulmonary Hypertension , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Monocrotaline/toxicity , Necroptosis , Pyroptosis , Rats , Rats, Wistar
10.
Physiol Rep ; 10(7): e15238, 2022 04.
Article in English | MEDLINE | ID: mdl-35384363

ABSTRACT

Nearly 1 in every 100 children born have a congenital heart defect. Many of these defects primarily affect the right heart causing pressure overload of the right ventricle (RV). The RV maintains function by adapting to the increased pressure; however, many of these adaptations eventually lead to RV hypertrophy and failure. In this study, we aim to identify the cellular and molecular mechanisms of these adaptions. We utilized a surgical animal model of pulmonary artery banding (PAB) in juvenile rats that has been shown to accurately recapitulate the physiology of right ventricular pressure overload in young hearts. Using this model, we examined changes in cardiac myocyte protein expression as a result of pressure overload with mass spectrometry 4 weeks post-banding. We found pressure overload of the RV induced significant downregulation of cardiac myosin light chain kinase (cMLCK). Single myocyte calcium and contractility recordings showed impaired contraction and relaxation in PAB RV myocytes, consistent with the loss of cMLCK. In the PAB myocytes, calcium transients were of smaller amplitude and decayed at a slower rate compared to controls. We also identified miR-200c, which has been shown to regulate cMLCK expression, as upregulated in the RV in response to pressure overload. These results indicate the loss of cMLCK is a critical maladaptation of the RV to pressure overload and represents a novel target for therapeutic approaches to treat RV hypertrophy and failure associated with congenital heart defects.


Subject(s)
Myosin-Light-Chain Kinase , Ventricular Dysfunction, Right , Animals , Disease Models, Animal , Heart Ventricles/metabolism , Hypertrophy, Right Ventricular/metabolism , Myocytes, Cardiac/metabolism , Rats , Ventricular Dysfunction, Right/etiology , Ventricular Function, Right/physiology , Ventricular Pressure/physiology
11.
Pharmacol Res ; 180: 106151, 2022 06.
Article in English | MEDLINE | ID: mdl-35247601

ABSTRACT

For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.


Subject(s)
Cardiomyopathies , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Ventricular Dysfunction, Right , Animals , Connexin 43 , Disease Models, Animal , Eucalyptol/therapeutic use , Heart Ventricles/metabolism , Homeostasis , Humans , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/metabolism , Pulmonary Arterial Hypertension/drug therapy , Ventricular Dysfunction, Right/metabolism
12.
Cells ; 11(3)2022 02 06.
Article in English | MEDLINE | ID: mdl-35159373

ABSTRACT

Right ventricular (RV) failure is a major cause of mortality in pulmonary arterial hypertension (PAH), but its mechanism remains largely unknown. MicroRNA-21 (miR-21) is involved in flow-mediated stress in the vasculature, but its effects on RV remodeling require investigations. Herein, we aim to study the mechanism of miR-21 in the early (compensated) and late (decompensated) phases of PAH-induced RV dysfunction. Using aorto-venous fistula (AVS) surgery, we established a rat model of PAH. To mimic the microenvironment of PAH, we treated cardiomyocytes with flow-mediated shear stress in 6 dyne for 3 and 8 h. To evaluate whether miR-21 could be a biomarker, we prospectively collected the sera of patients with congenital heart disease- (CHD) related PAH. Additionally, clinical, echocardiographic and right heart catheterization information was collected. The primary endpoint was hospitalization for decompensated heart failure (HF). It is of note that, despite an initial increase in miR-21 expression in hypertrophic RV post AVS, miR-21 expression decreased with RV dysfunction thereafter. Likewise, the activation of miR-21 in cardiomyocytes under shear stress at 3 h was downregulated at 6 h. The downregulated miR-21 at the late phase was associated with increased apoptosis in cardiomyocytes while miR-21 mimic rescued it. Among 76 CHD-induced PAH patients, 19 who were hospitalized for heart failure represented with a significantly lower expression of circulating miR-21. Collectively, our study revealed that the upregulation of miR-21 in the early phase (RV hypertrophy) and downregulation in the late phase (RV dysfunction) under PAH triggered a biphasic regulation of cardiac remodeling and cardiomyocyte apoptosis.


Subject(s)
Heart Defects, Congenital , Heart Failure , MicroRNAs , Pulmonary Arterial Hypertension , Ventricular Dysfunction, Right , Animals , Heart Failure/genetics , Heart Failure/metabolism , Humans , Hypertrophy, Right Ventricular/metabolism , MicroRNAs/metabolism , Pulmonary Arterial Hypertension/genetics , Rats , Ventricular Dysfunction, Right/genetics , Ventricular Dysfunction, Right/metabolism
13.
J Thorac Cardiovasc Surg ; 164(6): e493-e510, 2022 12.
Article in English | MEDLINE | ID: mdl-34922752

ABSTRACT

OBJECTIVES: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart. We propose that cardiomyocyte proliferation improves RV adaptation to pressure load (PL). We studied adaptation in response to increased RV PL and the role of increased cardiomyocyte cell cycle activity (CCA) in rat pups growing into adulthood. METHODS: We induced RV PL at day of weaning in rats (3 weeks; 30-40 g) by pulmonary artery banding and followed rats into adulthood (300 g). We performed histological analyses and RNA sequencing analysis. To study the effects of increased cardiomyocyte cell cycle activity, we administered neuregulin-1 (NRG1), a growth factor involved in cardiac development. RESULTS: PL induced an increase in CCA, with subsequent decline of CCA (sham/PL at 4 weeks: 0.14%/0.83%; P = .04 and 8 weeks: 0.00%/0.00%; P = .484) and cardiac function (cardiac index: control/PL 4 weeks: 4.41/3.29; P = .468 and 8 weeks: 3.57/1.44; P = .024). RNA sequencing analysis revealed delayed maturation and increased CCA pathways. NRG1 stimulated CCA (PL vehicle/NRG1 at 2 weeks: 0.62%/2.28%; P = .003), improved cardiac function (cardiac index control vs vehicle/NRG1 at 2 weeks: 4.21 vs 3.07/4.17; P = .009/.705) and postponed fibrosis (control vs vehicle/NRG1 at 4 weeks: 1.66 vs 4.82%/2.97%; P = .009/.078) in RV PL rats during childhood. CONCLUSIONS: RV PL during growth induces a transient CCA increase. Further CCA stimulation improves cardiac function and delays fibrosis. This proof-of-concept study shows that stimulation of CCA can improve RV adaptation to PL in the postnatal developing heart and might provide a new approach to preserve RV function in patients with congenital heart disease.


Subject(s)
Heart Failure , Ventricular Dysfunction, Right , Rats , Animals , Hypertrophy, Right Ventricular/metabolism , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/prevention & control , Ventricular Dysfunction, Right/metabolism , Ventricular Pressure/physiology , Neuregulin-1/genetics , Neuregulin-1/metabolism , Neuregulin-1/pharmacology , Ventricular Function, Right , Myocytes, Cardiac/metabolism , Fibrosis , Heart Failure/metabolism , Cell Cycle , Disease Models, Animal
14.
Clin Sci (Lond) ; 135(21): 2467-2481, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34676402

ABSTRACT

Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling. Exploring new therapy target is urgent. The purpose of the present study is to investigate whether and how spliced x-box binding protein 1 (xbp1s), a key component of endoplasmic reticulum stress (ERS), contributes to the pathogenesis of PH. Forty male SD rats were randomly assigned to four groups: Control, Monocrotaline (MCT), MCT+AAV-CTL (control), and MCT+AAV-xbp1s. The xbp1s protein levels were found to be elevated in lung tissues of the MCT group. Intratracheal injection of adeno-associated virus serotype 1 carrying xbp1s shRNA (AAV-xbp1s) to knock down the expression of xbp1s effectively ameliorated the MCT-induced elevation of right ventricular systolic pressure (RVSP), total pulmonary resistance (TPR), right ventricular hypertrophy and medial wall thickness of muscularized distal pulmonary arterioles. The abnormally increased positive staining rates of proliferating cell nuclear antigen (PCNA) and Ki67 and decreased positive staining rates of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) in pulmonary arterioles were also reversed in the MCT+AAV-xbp1s group. For mechanistic exploration, bioinformatics prediction of the protein network was performed on the STRING database, and further verification was performed by qRT-PCR, Western blots and co-immunoprecipitation (Co-IP). DNA damage-inducible transcript 3 (Ddit3) was identified as a downstream protein that interacted with xbp1s. Overexpression of Ddit3 restored the decreased proliferation, migration and cell viability caused by silencing of xbp1s. The protein level of Ddit3 was also highly consistent with xbp1s in the animal model. Taken together, our study demonstrated that xbp1s-Ddit3 may be a potential target to interfere with vascular remodeling in PH.


Subject(s)
Arterial Pressure , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Transcription Factor CHOP/metabolism , Vascular Remodeling , X-Box Binding Protein 1/metabolism , Animals , Apoptosis , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Male , Monocrotaline , Muscle, Smooth, Vascular/physiopathology , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Rats, Sprague-Dawley , Signal Transduction , Transcription Factor CHOP/genetics , Ventricular Dysfunction, Right/chemically induced , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right , X-Box Binding Protein 1/genetics
15.
J Cardiovasc Pharmacol ; 78(2): 253-262, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34554677

ABSTRACT

ABSTRACT: Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by excessive proliferation and vasoconstriction of small pulmonary artery vascular smooth muscle cells (PASMCs). Coptidis rhizoma (CR) because of the complexity of the components, the underlying pharmacological role and mechanism of it on PAH remains unknown. In this article, the network pharmacological analysis was used to screen the main active constituents of CR and the molecular targets that these constituents act on. Then, we evaluated the importance of berberine and quercetin (biologically active components of CR) on the proliferation and migration of PASMCs and vascular remodeling in experimental models of PAH. Our results showed that berberine and quercetin effectively inhibited the proliferation and migration of hypoxia-induced PASMCs in a manner likely to be mediated by the suppression of MAPK1, NADPH oxidase 4 (NOX4), and cytochrome P450 1B1 (CYP1B1) expression. Furthermore, berberine and quercetin treatment attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension in rat models. In conclusion, this research demonstrates CR might be a promising treatment option for PAH, and the network pharmacology approach can be an effective tool to reveal the potential mechanisms of Chinese herbal medicine.


Subject(s)
Antihypertensive Agents/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Pulmonary Arterial Hypertension/prevention & control , Vascular Remodeling/drug effects , Animals , Antihypertensive Agents/isolation & purification , Berberine/isolation & purification , Berberine/pharmacology , Cells, Cultured , Coptis chinensis , Cytochrome P-450 CYP1B1/metabolism , Databases, Genetic , Disease Models, Animal , Drugs, Chinese Herbal/isolation & purification , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/prevention & control , Mitogen-Activated Protein Kinase 1/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , NADPH Oxidase 4/metabolism , Network Pharmacology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Quercetin/isolation & purification , Quercetin/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Ventricular Function, Right/drug effects
16.
Sci Rep ; 11(1): 18002, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504231

ABSTRACT

Pulmonary hypertension (PH) initially results in compensatory right ventricular (RV) hypertrophy, but eventually in RV failure. This transition is poorly understood, but may be triggered by hypoxia. Measurements of RV oxygen tension (pO2) in PH are lacking. We hypothesized that RV hypoxia occurs in monocrotaline-induced PH in rats and that myo-inositol trispyrophosphate (ITPP), facilitating oxygen dissociation from hemoglobin, can relieve it. Rats received monocrotaline (PH) or saline (control) and 24 days later echocardiograms, pressure-volume loops were obtained and myocardial pO2 was measured using a fluorescent probe. In PH mean pulmonary artery pressure more than doubled (35 ± 5 vs. 15 ± 2 in control), RV was hypertrophied, though its contractility was augmented. RV and LV pO2 was 32 ± 5 and 15 ± 8 mmHg, respectively, in control rats. In PH RV pO2 was reduced to 18 ± 9 mmHg, while LV pO2 was unchanged. RV pO2 correlated with RV diastolic wall stress (negatively) and LV systolic pressure (positively). Acute ITPP administration did not affect RV or LV pO2 in control animals, but increased RV pO2 to 26 ± 5 mmHg without affecting LV pO2 in PH. RV oxygen balance is impaired in PH and as such can be an important target for PH therapy. ITPP may be one of such potential therapies.


Subject(s)
Cardiotonic Agents/pharmacology , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/drug therapy , Hypoxia/drug therapy , Inositol Phosphates/pharmacology , Ventricular Dysfunction, Right/drug therapy , Animals , Cardiotonic Agents/administration & dosage , Disease Models, Animal , Hemoglobins/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Hypoxia/chemically induced , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Monocrotaline/administration & dosage , Myocardial Contraction/drug effects , Myocardial Contraction/physiology , Rats , Rats, Wistar , Treatment Outcome , Ventricular Dysfunction, Right/chemically induced , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right/physiology
17.
Am J Physiol Heart Circ Physiol ; 321(5): H940-H947, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34559582

ABSTRACT

Right-sided heart failure is a common consequence of pulmonary arterial hypertension. Overloading the right ventricle results in right ventricular hypertrophy, which progresses to failure in a process characterized by impaired Ca2+ dynamics and force production that is linked with transverse (t)-tubule remodeling. This also unloads the left ventricle, which consequently atrophies. Experimental left-ventricular unloading can result in t-tubule remodeling, but it is currently unclear if this occurs in right-sided heart failure. In this work, we used a model of monocrotaline (MCT)-induced right heart failure in male rats, using confocal microscopy to investigate cellular remodeling of t-tubules, junctophilin-2 (JPH2), and ryanodine receptor-2 (RyR2). We examined remodeling across tissue anatomical regions of both ventricles: in trabeculae, papillary muscles, and free walls. Our analyses revealed that MCT hearts demonstrated a significant loss of t-tubule periodicity, disruption of the normal sarcomere striated pattern with JPH2 labeling, and also a disorganized striated pattern of RyR2, a feature not previously reported in right heart failure. Remodeling of JPH2 and RyR2 in the MCT heart was more pronounced in papillary muscles and trabeculae compared with free walls, particularly in the left ventricle. We find that these structures, commonly used as ex vivo muscle preparations, are more sensitive to the disease process.NEW & NOTEWORTHY In this work, we demonstrate that t-tubule remodeling occurs in the atrophied left ventricle as well as the overloaded right ventricle after right-side heart failure. Moreover, we identify that t-tubule remodeling in both ventricles is linked to sarcoplasmic reticulum remodeling as indicated by decreased labeling periodicity of both the Ca2+ release channel, RyR2, and the cardiac junction-forming protein, JPH2, that forms a link between the sarcoplasmic reticulum and sarcolemma. Studies developing treatments for right-sided heart failure should consider effects on both the right and left ventricle.


Subject(s)
Heart Failure/physiopathology , Heart Ventricles/physiopathology , Hypertrophy, Left Ventricular/physiopathology , Sarcomeres/pathology , Ventricular Function, Left , Ventricular Function, Right , Ventricular Remodeling , Animals , Calcium Signaling , Disease Models, Animal , Heart Failure/chemically induced , Heart Failure/metabolism , Heart Failure/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Right Ventricular/chemically induced , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Male , Membrane Proteins/metabolism , Monocrotaline , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcomeres/metabolism
18.
Circulation ; 144(7): 539-555, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34111939

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS: Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS: Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.


Subject(s)
Gene Transfer Techniques , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Nanoparticles , Persistent Fetal Circulation Syndrome/complications , Pulmonary Alveoli/abnormalities , STAT3 Transcription Factor/genetics , Airway Remodeling/genetics , Animals , Biomarkers , Disease Models, Animal , Disease Susceptibility , Drug Carriers , Drug Delivery Systems , Echocardiography , Fibrosis , Forkhead Transcription Factors/deficiency , Genetic Therapy , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/diagnosis , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/metabolism , Mice , Mice, Transgenic , Microvascular Density/genetics , Myofibroblasts/metabolism , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , STAT3 Transcription Factor/administration & dosage , Theranostic Nanomedicine/methods , Treatment Outcome , Vascular Remodeling/genetics
19.
BMC Cardiovasc Disord ; 21(1): 249, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34020615

ABSTRACT

OBJECTIVE: Proinflammatory cytokine interleukin 17 (IL-17) is involved in ventricular remodeling, mainly of the left ventricle. This study was designed to explore the role of IL-17 played in the pathogenesis of right ventricular hypertrophy (RVH), aiming to provide a novel treatment target or diagnostic biomarker options for improving the care of RVH patients. METHODS: C57BL/6 mice were maintained in 10% O2 chamber or room air for four weeks. Right ventricular hypertrophy index (RVHI), RV/body weight ratio, pulmonary arteriolar remodeling determined by percent media thickness (%MT), and the cardiomyocyte diameter of RV were evaluated. Mice were treated with exogenous recombinant mouse IL-17 (rmIL-17, 1 µg per dose twice a week) for four weeks. H9c2 cardiomyocytes were cultured and treated with IL-17 (10 ng/mL) and STAT3 inhibitor (10 ng/mL) either under normoxia (21% O2, 5% CO2, 74% N2) or under hypoxia (3% O2, 5% CO2, 92% N2). Cardiomyocyte viability was assessed by Cell counting kit 8 (CCK-8) assay. The mRNA level was detected by RT-PCR, where as the protein expression was measured by Western blot, immunohistochemistry, and immunofluorescent analyses. RESULTS: In vivo experiments showed that IL-17 did not affect the pulmonary artery under normoxia, after treatment with rmIL-17, %MT was not changed, while RVHI and the RV/body weight ratio were increased, indicating that IL-17 directly induced right ventricular hypertrophy. In a time-course study, the mice were exposed to hypoxia for 0, 1, 2, 3, 4 weeks, respectively. We found that the expression of IL-17 was gradually upregulated in RV tissue in a time-dependent manner after one week of hypoxia exposure, especially at the third and fourth week. Cardiomyocyte hypertrophy and apoptosis were observed after the exposure of the mice to hypoxia for four weeks, rmIL-17 further aggravated the hypoxia-induced cardiomyocyte hypertrophy and apoptosis. The expression of p-STAT3 in the IL-17-deficient mice was lower than in the wild-type mice. In vitro, IL-17 inhibited cardiomyocyte viability and induced cardiomyocyte apoptosis via STAT3 under both normoxic and hypoxic conditions. CONCLUSIONS: These findings support a role for IL-17 as a mediator in the pathogenesis RVH, which might be considered as a potential novel anti-inflammation therapeutic strategy or diagnostic biomarker for RVH.


Subject(s)
Hypertrophy, Right Ventricular/metabolism , Hypoxia/metabolism , Interleukin-17/metabolism , Myocytes, Cardiac/metabolism , STAT3 Transcription Factor/metabolism , Ventricular Function, Right , Ventricular Remodeling , Animals , Cell Hypoxia , Cell Line , Disease Models, Animal , Hypertrophy, Right Ventricular/pathology , Hypertrophy, Right Ventricular/physiopathology , Hypoxia/pathology , Hypoxia/physiopathology , Interleukin-17/genetics , Interleukin-17/toxicity , Male , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phosphorylation , Rats , Signal Transduction , Ventricular Function, Right/drug effects , Ventricular Remodeling/drug effects
20.
Biochem Biophys Res Commun ; 557: 40-47, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33862458

ABSTRACT

Hypoxic pulmonary vascular remodeling is a pathological feature of pulmonary hypertension (PH). Our results showed that centromere-associated protein E (CENPE) expression in PH patients and hypoxia-induced PH rats was significantly higher than that in normal controls. In addition, CENPE deficiency significantly inhibited the development of pulmonary vascular remodeling and right ventricular hypertrophy. Moreover, knocking out CENPE effectively inhibited the proliferation and induced the apoptosis of primary pulmonary artery smooth muscle cells (PASMCs) in vivo. Furthermore, CENPE silencing by small interference significantly inhibited abnormal proliferation, apoptosis resistance, migration, and cell cycle arrest in hypoxia-induced PASMCs. Interestingly, we found that CENPE might exert its biological effect by targeting the transcription of CDK1 proteins.


Subject(s)
CDC2 Protein Kinase/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Hypertension, Pulmonary/pathology , Hypertrophy, Right Ventricular/pathology , Pulmonary Artery/pathology , Vascular Remodeling/physiology , Animals , CDC2 Protein Kinase/genetics , Cells, Cultured , Chromosomal Proteins, Non-Histone/genetics , Disease Models, Animal , Female , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia/pathology , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...